Sains Malaysiana
55(12)(2025): 103-116
http://doi.org/10.17576/jsm-2026-5501-08
Topological Analysis of Age-Related Proteins in
Protein-Protein Interaction Networks via Local Persistent Homology
(Analisis Topologi Protein Berkaitan Umur dalam Rangkaian Interaksi Protein-Protein melalui Homologi Berterusan Tempatan)
ABDUL SYUKOR HAZRAM, SAKHINAH ABU BAKAR*
& FATIMAH ABDUL RAZAK
Department of Mathematical Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 8 November 2024/Diterima: 25 Disember 2025
Abstract
Ageing is a complex biological process that gradually
alters cellular function and patterns of protein interaction. Standard
network-based measures such as degree, betweenness and clustering coefficient
are widely used in protein–protein interaction networks (PPINs), but these
metrics may overlook subtle changes within local neighbourhoods. This study
applies Local Persistent Homology (LPH) to characterise age-related differences
in the local topology of PPINs, providing structural information that is not captured
through global or node-level analyses. For each protein, a level 2 ego network
is constructed and its
and
features are summarised using persistence
diagrams (PDs). The Wasserstein distance between PDs from adult and elderly
networks is then computed to quantify topological variation across age groups. The
Wasserstein distance for each protein was compared with its degree,
betweenness, and local clustering coefficient to examine how local topological
structure relates to standard centrality measures. Proteins with many
topological components tend to exhibit higher degree and betweenness but lower
clustering, while proteins in simpler neighbourhoods show longer average
persistence and more stable structural patterns. By integrating LPH results with
gene-disease association data, 25 proteins with notable age-related topological
differences are identified, including several associated with neurodegenerative
diseases. Overall, LPH deepens the analysis of PPIN architecture by exposing
subtle, age-linked structural patterns that remain undetected using network centralities.
Keywords: Ageing; local persistent homology; network
centrality
Abstrak
Penuaan
merupakan suatu proses biologi kompleks yang mengubah fungsi sel dan corak
interaksi protein secara beransur-ansur. Pengukuran rangkaian sedia ada seperti
pemusatan darjah, pengantaraan dan pekali gugusan tempatan digunakan dalam
rangkaian interaksi protein–protein (RIPP), namun metrik ini mungkin tidak
mampu menangkap perubahan halus yang berlaku dalam kejiranan tempatan. Kajian
ini menggunakan Homologi Gigih Tempatan (HGT) untuk mencirikan perbezaan
berkaitan usia dalam topologi tempatan RIPP, sekali gus menyediakan maklumat
struktur yang tidak dapat ditangkap melalui analisis peringkat global atau nod.
Bagi setiap protein, rangkaian ego aras 2 dibina dan ciri
serta
diringkaskan
melalui rajah gigih (PD). Jarak Wasserstein antara PD bagi rangkaian dewasa dan
warga emas kemudiannya dikira untuk mengukur variasi topologi merentas kumpulan
umur. Nilai jarak Wasserstein bagi setiap protein dibandingkan dengan pemusatan
darjah, pengantaraan dan pekali gugusan tempatan untuk menilai hubungan antara
struktur topologi tempatan dan pengukuran rangkaian tempatan. Protein dengan
komponen topologi yang tinggi cenderung mempunyai nilai pemusatan darjah dan
pengantaraan yang lebih tinggi tetapi pekali gugusan yang lebih rendah,
manakala protein dalam kejiranan yang lebih ringkas menunjukkan purata jangka
hayat yang lebih panjang dan struktur yang lebih stabil. Dengan menggabungkan hasil
HGT bersama data hubungan gen-penyakit, sebanyak 25 protein dikenal pasti
menunjukkan perbezaan topologi berkaitan usia yang ketara, termasuk beberapa
yang berkaitan dengan penyakit neurodegeneratif. Secara keseluruhannya, HGT
memperkukuh analisis struktur RIPP dengan mendedahkan pola halus yang berkait
dengan usia, yang tidak dapat dikesan menggunakan pemusatan rangkaian.
Kata kunci: Homologi gigih tempatan; pemusatan rangkaian; penuaan
RUJUKAN
Aguilar-Alarcón, J.J., Hernández-Gómez, J.C. &
Romero-Valencia, J. 2023. The clustering coefficient for graph products. Axioms 12(10): 968.
Aktas, M.E., Akbas, E. & El Fatmaoui, A. 2019.
Persistence homology of networks: Methods and applications. Applied Network
Science 4: 1-28.
Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M.,
Roberts, K. & Walter, P. 2007. Molecular Biology of the Cell. 5th
ed. New York: W.W. Norton & Company.
Ashtiani, M., Salehzadeh-Yazdi, A., Razaghi-Moghadam, Z.,
Hennig, H., Wolkenhauer, O., Mirzaie, M. & Jafari, M. 2018. A systematic
survey of centrality measures for protein-protein interaction networks. BMC
Systems Biology 12(1): 80.
Berchtold, N.C., Cribbs, D.H., Coleman, P.D., Rogers, J.,
Head, E., Kim, R., Beach, T., Miller, C., Troncoso, J., Trojanowski, J.Q.,
Zielke, H.R. & Cotman, C.W. 2008. Gene expression changes in the course of
normal brain aging are sexually dimorphic. Proceedings of the National
Academy of Sciences of the United States of America 105: 15605-15610.
Bhowmick, S.S. & Seah, B.S. 2016. Clustering and summarizing
protein-protein interaction networks: A survey. IEEE Transactions on
Knowledge and Data Engineering 28(3): 638-658.
Brandes, U. 2001. A faster algorithm for betweenness
centrality. Journal of Mathematical Sociology 25(2):
163-177.
Budovsky, A., Craig, T., Wang, J., Tacutu, R., Csordas, A.,
Lourenço, J., Fraifeld, V.E. & De Magalhães, J.P. 2013. LongevityMap: A
database of human genetic variants associated with longevity. Trends in
Genetics 29(10): 559-560.
Calabrese, G., Molzahn, C. & Mayor, T. 2022. Protein
interaction networks in neurodegenerative diseases: From physiological function
to aggregation. Journal of Biological Chemistry 298(7):
102062.
Cohen-Steiner, D., Edelsbrunner, H. & Harer, J. 2007.
Stability of persistence diagrams. Discrete and Computational Geometry 37(1): 263-271.
Corriveau-Lecavalier, N., Gunter, J.L., Kamykowski, M.,
Dicks, E., Botha, H., Kremers, W.K., Graff-Radford, J., Wiepert, D.A., Schwarz,
C.G., Yacoub, E., Knopman, D.S., Boeve, B.F., Ugurbil, K., Petersen, R.C.,
Jack, C.R., Terpstra, M.J. & Jones, D.T. 2023. Default mode network failure
and neurodegeneration across aging and amnestic and dysexecutive Alzheimer’s
disease. Brain Communications 5(2): fcad058.
de Magalhães, J.P., Budovsky, A., Lehmann, G., Costa, J.,
Li, Y., Fraifeld, V. & Church, G.M. 2009. The human ageing genomic resources:
Online databases and tools for biogerontologists. Aging Cell 8(2):
65-72.
de Magalhaes, J.P. & Toussaint, O. 2004. GenAge: A Genomic and Proteomic Network Map of Human Ageing. FEBS letters 571(1-3): 243-247.
del Toro, N., Shrivastava, A., Ragueneau, E., Meldal, B.,
Combe, C., Barrera, E., Perfetto, L., How, K., Ratan, P., Shirodkar, G., Lu,
O., Mészáros, B., Watkins, X., Pundir, S., Licata, L., Iannuccelli, M.,
Pellegrini, M., Martin, M.J., Panni, S., Duesbury, M., Vallet, S.D.,
Rappsilber, J., Ricard-Blum, S., Cesareni, G., Salwinski, L., Orchard, S.,
Porras, P., Panneerselvam, K. & Hermjakob, H. 2022. The IntAct database: Efficient
access to fine-grained molecular interaction data. Nucleic Acids Research 50(D1): D648-D653.
Dey, T.K., Shi, D. & Wang, Y. 2015. Comparing graphs via
persistence distortion. Leibniz International Proceedings in Informatics (LIPIcs) 34: 491-506.
Dong, X., Li, Y., Li, Q., Li, W. & Wu, G. 2023.
Identification of immune signatures in Parkinson’s disease based on
co-expression networks. Frontiers in Genetics 14: 1090382.
Erciyes, K. 2023. Graph-theoretical analysis of biological
networks: A survey. Computation11(10):
188.
Faisal, F.E. & Milenković, T. 2014. Dynamic
networks reveal key players in aging. Bioinformatics 30(12): 1721-1729.
Faisal, F.E., Zhao, H. & Milenkovic, T. 2015. Global
network alignment in the context of aging. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 12(1):
22-32.
Faisal, F.E., Meng, L., Crawford, J. & Milenković,
T. 2015. The post-genomic era of biological network alignment. Eurasip
Journal on Bioinformatics and Systems Biologyhttps://doi.org/10.1186/s13637-015-0022-9
Fasy, B.T. & Wang, B. 2016. Exploring persistent local
homology in topological data analysis. ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing – Proceedings.pp. 6430-6434.
Hajij, M., Wang, B., Scheidegger, C. & Rosen, P. 2018.
Visual detection of structural changes in time-varying graphs using persistent
homology. IEEE Pacific Visualization Symposium pp. 125-134.
Hazram, A.S., Bakar, S.A. & Razak, F.A. 2024.
Discovering the important proteins through persistent homology in aging
protein-protein interaction networks. Commun. Math. Biol. Neurosci. 2024:
115.
Hipp, M.S., Park, S.H. & Hartl, U.U. 2014. Proteostasis
impairment in protein-misfolding and -aggregation diseases. Trends in Cell
Biology 24(9): 506-514.
Hwang, J.T., Lee, A. & Kho, C. 2022. Ubiquitin and ubiquitin-like
proteins in cancer, neurodegenerative disorders, and heart diseases. International
Journal of Molecular Sciences 23(9):
5053.
Ignacio, P.S.P. & Darcy, I.K. 2019. Tracing patterns and
shapes in remittance and migration networks via persistent homology. EPJ
Data Science 8: 1.
Islambekov, U. & Gel, Y.R. 2019. Unsupervised space–time
clustering using persistent homology. Environmetrics 30: e2539.
Kosch, D. & Schreiber, F. 2004. Comparison of centralities
for biological networks. Proc. German Conf. Bioinformatics 2004:
199-206.
Kurtishi, A., Rosen, B., Patil, K.S., Alves, G.W. &
Møller, S.G. 2019. Cellular proteostasis in neurodegeneration. Molecular
Neurobiology 56(5): 3676-3689.
Li, J., Bian, C., Luo, H., Chen, D., Cao, L. & Liang, H.
2021. Multi-dimensional persistent feature analysis identifies connectivity
patterns of resting-state brain networks in Alzheimer’s disease. Journal of
Neural Engineering 18(1): 016012.
Liu, Y., Weng, W., Gao, R., Liu, Y. & Monacelli, F.
2019. New insights for cellular and molecular mechanisms of aging and
aging-related diseases: Herbal medicine as potential therapeutic approach. Oxidative
Medicine and Cellular Longevity 2019:
4598167.
Masoomy, H., Askari, B., Tajik, S., Rizi, A.K. & Jafari,
G.R. 2021. Topological analysis of interaction patterns in cancer-specific gene
regulatory network: Persistent homology approach. Scientific Reports 11(1): 16414.
Mooney, K.M., Morgan, A.E. & McAuley, M.T. 2016. Aging
and computational systems biology. Wiley Interdisciplinary Reviews: Systems
Biology and Medicine 8(2): 123-139.
Ni, Y.Q., Xu, H. & Liu, Y.S. 2022. Roles of long non-coding
RNAs in the development of aging-related neurodegenerative diseases. Frontiers
in Molecular Neuroscience 15: 844193.
Ogrodnik, M., Salmonowicz, H. & Gladyshev, V.N. 2019.
Integrating cellular senescence with the concept of damage accumulation in
aging: Relevance for clearance of senescent cells. Aging Cell 18(1):
e12841.
Partridge, L., Deelen, J. & Slagboom, P.E. 2018. Facing
up to the global challenges of ageing. Nature 561:
45-56.
Piñero, J., Ramírez-Anguita, J.M., Saüch-Pitarch, J.,
Ronzano, F., Centeno, E., Sanz, F. & Furlong, L.I. 2020. The DisGeNET
knowledge platform for disease genomics: 2019 update. Nucleic Acids Research 48(D1): D845-D855.
Song, E. 2023. Persistent homology analysis of type 2
diabetes genome-wide association studies in protein–protein interaction
networks. Frontiers in Genetics 14: 1270185.
Sugis, E. & Hermajakob, H. 2019. Human PPI from IntAct
database (IAH). Figshare. Dataset.10.6084/m9.figshare.10200136
Syukor, H. & Sakhinah, A.B. 2019. Characterization of essential
protein in aging based on network analysis. Journal of Physics: Conference
Series 1366: 012026.
Tacutu, R., Thornton, D., Johnson, E., Budovsky, A.,
Barardo, D., Craig, T., DIana, E., Lehmann, G., Toren, D., Wang, J., Fraifeld,
V.E. & De Magalhães, J.P. 2018. Human ageing genomic resources: New and
updated databases. Nucleic Acids Research 46(D1): D1083-D1090.
Tacutu, R., Craig, T., Budovsky, A., Wuttke, D., Lehmann,
G., Taranukha, D., Costa, J., Fraifeld, V.E. & De Magalhães, J.P. 2013.
Human ageing genomic resources: Integrated databases and tools for the biology
and genetics of ageing. Nucleic Acids Research 41(D1): D1027-D1033.
Teulière, J., Bernard, C., Corel, E., Lapointe, F.J.,
Martens, J., Lopez, P. & Bapteste, E. 2023. Network analyses unveil
ageing-associated pathways evolutionarily conserved from fungi to animals. GeroScience 45(2): 1059-1080.
*Pengarang untuk
surat-menyurat; email: p94850@siswa.ukm.edu.my
|