Sains Malaysiana 55(12)(2025): 103-116

http://doi.org/10.17576/jsm-2026-5501-08

 

Topological Analysis of Age-Related Proteins in Protein-Protein Interaction Networks via Local Persistent Homology

(Analisis Topologi Protein Berkaitan Umur dalam Rangkaian Interaksi Protein-Protein melalui Homologi Berterusan Tempatan)

 

ABDUL SYUKOR HAZRAM, SAKHINAH ABU BAKAR* & FATIMAH ABDUL RAZAK

 

Department of Mathematical Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 8 November 2024/Diterima: 25 Disember 2025

 

Abstract

Ageing is a complex biological process that gradually alters cellular function and patterns of protein interaction. Standard network-based measures such as degree, betweenness and clustering coefficient are widely used in protein–protein interaction networks (PPINs), but these metrics may overlook subtle changes within local neighbourhoods. This study applies Local Persistent Homology (LPH) to characterise age-related differences in the local topology of PPINs, providing structural information that is not captured through global or node-level analyses. For each protein, a level 2 ego network is constructed and its  and  features are summarised using persistence diagrams (PDs). The Wasserstein distance between PDs from adult and elderly networks is then computed to quantify topological variation across age groups. The Wasserstein distance for each protein was compared with its degree, betweenness, and local clustering coefficient to examine how local topological structure relates to standard centrality measures. Proteins with many topological components tend to exhibit higher degree and betweenness but lower clustering, while proteins in simpler neighbourhoods show longer average persistence and more stable structural patterns. By integrating LPH results with gene-disease association data, 25 proteins with notable age-related topological differences are identified, including several associated with neurodegenerative diseases. Overall, LPH deepens the analysis of PPIN architecture by exposing subtle, age-linked structural patterns that remain undetected using network centralities.

Keywords: Ageing; local persistent homology; network centrality

 

Abstrak

Penuaan merupakan suatu proses biologi kompleks yang mengubah fungsi sel dan corak interaksi protein secara beransur-ansur. Pengukuran rangkaian sedia ada seperti pemusatan darjah, pengantaraan dan pekali gugusan tempatan digunakan dalam rangkaian interaksi protein–protein (RIPP), namun metrik ini mungkin tidak mampu menangkap perubahan halus yang berlaku dalam kejiranan tempatan. Kajian ini menggunakan Homologi Gigih Tempatan (HGT) untuk mencirikan perbezaan berkaitan usia dalam topologi tempatan RIPP, sekali gus menyediakan maklumat struktur yang tidak dapat ditangkap melalui analisis peringkat global atau nod. Bagi setiap protein, rangkaian ego aras 2 dibina dan ciri  serta  diringkaskan melalui rajah gigih (PD). Jarak Wasserstein antara PD bagi rangkaian dewasa dan warga emas kemudiannya dikira untuk mengukur variasi topologi merentas kumpulan umur. Nilai jarak Wasserstein bagi setiap protein dibandingkan dengan pemusatan darjah, pengantaraan dan pekali gugusan tempatan untuk menilai hubungan antara struktur topologi tempatan dan pengukuran rangkaian tempatan. Protein dengan komponen topologi yang tinggi cenderung mempunyai nilai pemusatan darjah dan pengantaraan yang lebih tinggi tetapi pekali gugusan yang lebih rendah, manakala protein dalam kejiranan yang lebih ringkas menunjukkan purata jangka hayat yang lebih panjang dan struktur yang lebih stabil. Dengan menggabungkan hasil HGT bersama data hubungan gen-penyakit, sebanyak 25 protein dikenal pasti menunjukkan perbezaan topologi berkaitan usia yang ketara, termasuk beberapa yang berkaitan dengan penyakit neurodegeneratif. Secara keseluruhannya, HGT memperkukuh analisis struktur RIPP dengan mendedahkan pola halus yang berkait dengan usia, yang tidak dapat dikesan menggunakan pemusatan rangkaian.

Kata kunci: Homologi gigih tempatan; pemusatan rangkaian; penuaan

 

RUJUKAN

Aguilar-Alarcón, J.J., Hernández-Gómez, J.C. & Romero-Valencia, J. 2023. The clustering coefficient for graph products. Axioms 12(10): 968.

Aktas, M.E., Akbas, E. & El Fatmaoui, A. 2019. Persistence homology of networks: Methods and applications. Applied Network Science 4: 1-28.

Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K. & Walter, P. 2007. Molecular Biology of the Cell. 5th ed. New York: W.W. Norton & Company.

Ashtiani, M., Salehzadeh-Yazdi, A., Razaghi-Moghadam, Z., Hennig, H., Wolkenhauer, O., Mirzaie, M. & Jafari, M. 2018. A systematic survey of centrality measures for protein-protein interaction networks. BMC Systems Biology 12(1): 80.

Berchtold, N.C., Cribbs, D.H., Coleman, P.D., Rogers, J., Head, E., Kim, R., Beach, T., Miller, C., Troncoso, J., Trojanowski, J.Q., Zielke, H.R. & Cotman, C.W. 2008. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proceedings of the National Academy of Sciences of the United States of America 105: 15605-15610.

Bhowmick, S.S. & Seah, B.S. 2016. Clustering and summarizing protein-protein interaction networks: A survey. IEEE Transactions on Knowledge and Data Engineering 28(3): 638-658.

Brandes, U. 2001. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25(2): 163-177.

Budovsky, A., Craig, T., Wang, J., Tacutu, R., Csordas, A., Lourenço, J., Fraifeld, V.E. & De Magalhães, J.P. 2013. LongevityMap: A database of human genetic variants associated with longevity. Trends in Genetics 29(10): 559-560.

Calabrese, G., Molzahn, C. & Mayor, T. 2022. Protein interaction networks in neurodegenerative diseases: From physiological function to aggregation. Journal of Biological Chemistry 298(7): 102062.

Cohen-Steiner, D., Edelsbrunner, H. & Harer, J. 2007. Stability of persistence diagrams. Discrete and Computational Geometry 37(1): 263-271.

Corriveau-Lecavalier, N., Gunter, J.L., Kamykowski, M., Dicks, E., Botha, H., Kremers, W.K., Graff-Radford, J., Wiepert, D.A., Schwarz, C.G., Yacoub, E., Knopman, D.S., Boeve, B.F., Ugurbil, K., Petersen, R.C., Jack, C.R., Terpstra, M.J. & Jones, D.T. 2023. Default mode network failure and neurodegeneration across aging and amnestic and dysexecutive Alzheimer’s disease. Brain Communications 5(2): fcad058.

de Magalhães, J.P., Budovsky, A., Lehmann, G., Costa, J., Li, Y., Fraifeld, V. & Church, G.M. 2009. The human ageing genomic resources: Online databases and tools for biogerontologists. Aging Cell 8(2): 65-72.

de Magalhaes, J.P. & Toussaint, O. 2004. GenAge: A Genomic and Proteomic Network Map of Human Ageing. FEBS letters 571(1-3): 243-247.

del Toro, N., Shrivastava, A., Ragueneau, E., Meldal, B., Combe, C., Barrera, E., Perfetto, L., How, K., Ratan, P., Shirodkar, G., Lu, O., Mészáros, B., Watkins, X., Pundir, S., Licata, L., Iannuccelli, M., Pellegrini, M., Martin, M.J., Panni, S., Duesbury, M., Vallet, S.D., Rappsilber, J., Ricard-Blum, S., Cesareni, G., Salwinski, L., Orchard, S., Porras, P., Panneerselvam, K. & Hermjakob, H. 2022. The IntAct database: Efficient access to fine-grained molecular interaction data. Nucleic Acids Research 50(D1): D648-D653.

Dey, T.K., Shi, D. & Wang, Y. 2015. Comparing graphs via persistence distortion. Leibniz International Proceedings in Informatics (LIPIcs) 34: 491-506.

Dong, X., Li, Y., Li, Q., Li, W. & Wu, G. 2023. Identification of immune signatures in Parkinson’s disease based on co-expression networks. Frontiers in Genetics 14: 1090382.

Erciyes, K. 2023. Graph-theoretical analysis of biological networks: A survey. Computation11(10): 188.

Faisal, F.E. & Milenković, T. 2014. Dynamic networks reveal key players in aging. Bioinformatics 30(12): 1721-1729.

Faisal, F.E., Zhao, H. & Milenkovic, T. 2015. Global network alignment in the context of aging. IEEE/ACM Transactions on Computational Biology and Bioinformatics 12(1): 22-32.

Faisal, F.E., Meng, L., Crawford, J. & Milenković, T. 2015. The post-genomic era of biological network alignment. Eurasip Journal on Bioinformatics and Systems Biologyhttps://doi.org/10.1186/s13637-015-0022-9

Fasy, B.T. & Wang, B. 2016. Exploring persistent local homology in topological data analysis. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings.pp. 6430-6434.

Hajij, M., Wang, B., Scheidegger, C. & Rosen, P. 2018. Visual detection of structural changes in time-varying graphs using persistent homology. IEEE Pacific Visualization Symposium pp. 125-134.

Hazram, A.S., Bakar, S.A. & Razak, F.A. 2024. Discovering the important proteins through persistent homology in aging protein-protein interaction networks. Commun. Math. Biol. Neurosci. 2024: 115.

Hipp, M.S., Park, S.H. & Hartl, U.U. 2014. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends in Cell Biology 24(9): 506-514.

Hwang, J.T., Lee, A. & Kho, C. 2022. Ubiquitin and ubiquitin-like proteins in cancer, neurodegenerative disorders, and heart diseases. International Journal of Molecular Sciences 23(9): 5053.

Ignacio, P.S.P. & Darcy, I.K. 2019. Tracing patterns and shapes in remittance and migration networks via persistent homology. EPJ Data Science 8: 1.

Islambekov, U. & Gel, Y.R. 2019. Unsupervised space–time clustering using persistent homology. Environmetrics 30: e2539.

Kosch, D. & Schreiber, F. 2004. Comparison of centralities for biological networks. Proc. German Conf. Bioinformatics 2004: 199-206.

Kurtishi, A., Rosen, B., Patil, K.S., Alves, G.W. & Møller, S.G. 2019. Cellular proteostasis in neurodegeneration. Molecular Neurobiology 56(5): 3676-3689.

Li, J., Bian, C., Luo, H., Chen, D., Cao, L. & Liang, H. 2021. Multi-dimensional persistent feature analysis identifies connectivity patterns of resting-state brain networks in Alzheimer’s disease. Journal of Neural Engineering 18(1): 016012.

Liu, Y., Weng, W., Gao, R., Liu, Y. & Monacelli, F. 2019. New insights for cellular and molecular mechanisms of aging and aging-related diseases: Herbal medicine as potential therapeutic approach. Oxidative Medicine and Cellular Longevity 2019: 4598167.

Masoomy, H., Askari, B., Tajik, S., Rizi, A.K. & Jafari, G.R. 2021. Topological analysis of interaction patterns in cancer-specific gene regulatory network: Persistent homology approach. Scientific Reports 11(1): 16414.

Mooney, K.M., Morgan, A.E. & McAuley, M.T. 2016. Aging and computational systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 8(2): 123-139.

Ni, Y.Q., Xu, H. & Liu, Y.S. 2022. Roles of long non-coding RNAs in the development of aging-related neurodegenerative diseases. Frontiers in Molecular Neuroscience 15: 844193.

Ogrodnik, M., Salmonowicz, H. & Gladyshev, V.N. 2019. Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging Cell 18(1): e12841.

Partridge, L., Deelen, J. & Slagboom, P.E. 2018. Facing up to the global challenges of ageing. Nature 561: 45-56.

Piñero, J., Ramírez-Anguita, J.M., Saüch-Pitarch, J., Ronzano, F., Centeno, E., Sanz, F. & Furlong, L.I. 2020. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Research 48(D1): D845-D855.

Song, E. 2023. Persistent homology analysis of type 2 diabetes genome-wide association studies in protein–protein interaction networks. Frontiers in Genetics 14: 1270185.

Sugis, E. & Hermajakob, H. 2019. Human PPI from IntAct database (IAH). Figshare. Dataset.10.6084/m9.figshare.10200136

Syukor, H. & Sakhinah, A.B. 2019. Characterization of essential protein in aging based on network analysis. Journal of Physics: Conference Series 1366: 012026.

Tacutu, R., Thornton, D., Johnson, E., Budovsky, A., Barardo, D., Craig, T., DIana, E., Lehmann, G., Toren, D., Wang, J., Fraifeld, V.E. & De Magalhães, J.P. 2018. Human ageing genomic resources: New and updated databases. Nucleic Acids Research 46(D1): D1083-D1090.

Tacutu, R., Craig, T., Budovsky, A., Wuttke, D., Lehmann, G., Taranukha, D., Costa, J., Fraifeld, V.E. & De Magalhães, J.P. 2013. Human ageing genomic resources: Integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Research 41(D1): D1027-D1033.

Teulière, J., Bernard, C., Corel, E., Lapointe, F.J., Martens, J., Lopez, P. & Bapteste, E. 2023. Network analyses unveil ageing-associated pathways evolutionarily conserved from fungi to animals. GeroScience 45(2): 1059-1080.

 

*Pengarang untuk surat-menyurat; email: p94850@siswa.ukm.edu.my

 

 

 

 

 

 

 

           

sebelumnya